close

A601.jpg

出版社:碁峰(歐萊禮)

出版日期:2020年3月25日

ISBN:9789865024062

書號:A601

定價:680元     售價:510元

有看部落格的才有此優惠喔
也可到露天購買https://goods.ruten.com.tw/item/show?22014398847648

      yahoo購買https://tw.bid.yahoo.com/item/%E7%9B%8A%E5%A4%A7%E8%B3%87%E8%A8%8A-%E9%9D%9E%E7%9B%A3%E7%9D%A3%E5%BC%8F%E5%AD%B8%E7%BF%92-%E4%BD%BF%E7%94%A8-Python-ISBN-97898650240-100816836332

      pchome 商店街購買https://seller.pcstore.com.tw/S140967598/C1428473820.htm
內容簡介

從無標籤資料應用機器學習解決方案

“研究人員、工程師與學生將會喜歡這本書,因為本書充滿務實的非監督式學習技術,採用平鋪直述的方式,以及囊括了可快速練習的Python範例。”
–Sarah Nagy
Senior Data Scientist at Edison

許多專家認為非監督式學習是人工智慧的下一個前沿技術,並且是邁向強人工智慧的關鍵。由於世界上大多數資料都沒有標籤,因此無法應用傳統的監督式學習。從另一方面來說,非監督式學習則可以應用在無標籤的資料集,用以發現埋藏在資料深處裡有意義的樣式,而這些樣式幾乎不可能被人類發現。

作者Ankur Patel藉由使用兩個簡單且已經可實際運用於業務開發(production-ready)的Python框架:Scikit-learn和Keras來示範如何應用非監督式學習。透過程式碼和實際操作範例,數據科學家將從資料中識別難以發現的樣式,獲得更深入的商業洞見、檢測異常、執行自動特徵工程和特徵選擇,以及生成合成資料集。你所需要的只是程式能力和一些機器學習經驗。

‧比較不同機器學習方法的優點和缺點:監督、非監督和強化學習
‧完整地設置和管理機器學習項目
‧為信用卡詐欺建立偵測系統
‧按照相同與不相同將使用者進行分群
‧實作半監督式學習
‧使用受限玻爾茲曼機(restricted Boltzmann machine, RBM)開發電影推薦系統
‧使用生成對抗網路建立合成影像
 

第一部分 非監督式學習的基礎
  chapter 01 機器學習領域裡的非監督式學習
  chapter 02 完整的機器學習專案

第二部分 使用 Scikit-Learn 開發非監督式學習
  chapter 03 維度縮減
  chapter 04 異常偵測
  chapter 05 分群
  chapter 06 群組區隔

第三部分 使用 TensorFlow 和 Keras 開發非監督式學習
  chapter 07 自動編碼器(Autoencoder)
  chapter 08 實際操作自動編碼器
  chapter 09 半監督式學習


第四部分 使用 TensorFlow 和 Keras 開發非監督式深度學習模型
  chapter 10 推薦系統使用受限波爾茲曼機
  chapter 11 使用深度信念網路(DBNs)進行特徵偵測
  chapter 12 生成對抗網路
  chapter 13 時序型資料分群法
  chapter 14 結論

索引

arrow
arrow
    全站熱搜
    創作者介紹
    創作者 ETAITBOOK08 的頭像
    ETAITBOOK08

    益大資訊(原光華商場益大書局)益大電腦圖書專賣店

    ETAITBOOK08 發表在 痞客邦 留言(0) 人氣()